Teacher notes Topic C

Sphere oscillating inside a bowl.

Consider a spherical bowl of radius *R* and a sphere of radius *r* inside the bowl. The sphere is displaced slightly from its equilibrium position and released. The sphere rolls without slipping inside the bowl.

- (a) Show that for very small displacements from equilibrium the sphere will perform simple harmonic oscillations with period given by $T = 2\pi \sqrt{\frac{7(R-r)}{5g}}$.
- (b) In an experiment, students used the same bowl and balls of different radius in order to verify the relationship above. They plotted r versus T^2 .
 - (i) Explain why they will obtain a straight line.
 - (ii) Determine the slope of the straight line.
 - (iii) Discuss the best way to obtain the value of *R* from the graph.

Answers

(a)

Friction provides the torque:

$$fr = I\alpha = I\frac{a}{r} \Longrightarrow f = \frac{Ia}{r^2}$$
. (We have rolling without slipping so $\alpha = \frac{a}{r}$.)

Newton's second law:

$$mg\sin\theta - f = ma$$
$$mg\sin\theta - \frac{la}{r^2} = ma$$
$$a = \frac{g\sin\theta}{1 + \frac{l}{mr^2}}$$

For a sphere, $I = \frac{2}{5}mr^2$ and so $a = \frac{g\sin\theta}{1 + \frac{2}{5}} = \frac{5g\sin\theta}{7}$. This acceleration is opposite to the

displacement. This is the tangential acceleration which brings the ball back towards equilibrium. The displacement is the length of the red arc of length $L = (R - r)\theta$. If the displacement is small, the angle θ is small and so $\sin\theta \approx \theta$, i.e.,

$$a = \frac{5g\sin\theta}{7} \approx \frac{5g\theta}{7} = \frac{5g}{7}\frac{L}{R-r}.$$

So, the acceleration is opposite to displacement and proportional to it. This means that we have SHM with $\omega^2 = \frac{5g}{7(R-r)}$. Hence $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{7(R-r)}{5g}}$.

(b)
(i)

$$T^{2} = 4\pi^{2} \frac{7(R-r)}{5g} = \frac{28\pi^{2}}{5g}(R-r)$$

 $R-r = \frac{5gT^{2}}{28\pi^{2}}$
 $r = R - \frac{5g}{28\pi^{2}}T^{2}$
 $y = R - \frac{5g}{28\pi^{2}}x$ which is the equation of a straight line
(ii) The gradient is $-\frac{5g}{28\pi^{2}}$ (about - 0.18 m s⁻²).

(iii) The vertical axis intercept is *R*. This is the best way to find *R* since it uses the line of best fit of all the data.